4

Specifying shapes from scratch
with polygons

Custom Polygons

Let’s look at what goes into making a unique
shape.

OpenGL Implementations

 First, review how a javascript program displays WebGL.

* Some standard setup functions got called upon starting our
program:
— Step 1: getContext() function of HTML canvases

* (in our “Canvas_Manager” constructor)

— Step 2: Tell the card to receive and compile your shaders

* (in our “Shader” constructor)

— Step 3: Specification of vertices (their positions, etc.), and
sending over this vertex data (this is our coding job for
shapes)

Vertex Specification

* We make arrays, then pass to the card
e Before that, our class Shape holds these arrays

e Shape() superclass has a method that does the
final step (“pass arrays to the card”)

— Let’s make a subclass:

Vertex Specification

* First, the simplest possible Shape — one triangle.
* 3 vertices, each having their own

— 3D position

— 3D normal vector

— 2D texture-space coordinate

* Vertices exist in two places at once in a way -- one in the 3D world and
one in the image

Xk ok ok ok ok Kk ok ok K ok ok ok K ok ok K K
// TRIANGLE

class Triangle extends Shape // First, the simplest possible Shape — one triangle. It has 3 vertices, each

{ constructor() // having their own 3D position, normal vector, and texture-space coordinate.
{super();
this.positions = [Vec.of(0,0,0), Vec.of(1,0,0), Vec.of(0,1,0)]; // Specify the 3 vertices -- the point cloud that our Triangle needs.
this.normals = [Vec.of(0,0,1), Vec.of(0,0,1), Vec.of(0,0,1)]; //...
this.texture_coords = [Vec.of(0,0), Vec.of(1,0), Vec.of(0,1)], //...
this.indices =[0,1,2]; // Index into our vertices to connect them into a whole Triangle.
}

How to use your Shape

e Putin your scene’s constructor:
this.submit_shapes(context, { 'funnyName': new Triangle() });

e Putin your scene’s display():

this.shapes.funnyName.draw(this.graphics_state, model _transform, ...);

 Replace “...” with a result of calling a material() function
— Just paste from the example materials in Tutorial _Animation

class Square extends Shape // A square, demonstrating shared vertices. On any planar surface, the interior edges don't make any important seams.
{ constructor() // In these cases there's no reason not to re-use data of the common vertices between triangles. This makes all the
{ super(); // vertex arrays (position, normals, etc) smaller and more cache friendly.
this.positions .push(...Vec.cast([-1,-1,0], [1,-1,0], [-1,1,0], [1,1,0])); // Specify the 4 vertices -- the point cloud that our Square needs.
this.normals .push(...Vec.cast([0,0,1], [0,0,1], [0,0,1], [0,0,1])); //...
this.texture_coords.push(...Vec.cast([0,0], [1,0], [0,1], [1,1])); //..

this.indices .push(0,1,2, 1,3,2); // Two triangles this time, indexing into four distinct vertices.

}

What happens when you instantiate a shape?

Magical WebGL calls, wrapped inside Shape class’s method
‘copy_onto_graphics_card()’.

*Uses gl.genBuffers() to request buffers from the graphics card (and store the
memory address of each in our Shape object — just ints)

*Uses gl.BindBuffer() to select a buffer as the current one being talked about
*Turns vectors into flat arrays (flatten()) and then calls gl.bufferData()

eTwo buffers: gl. ARRAY_BUFFER and gl.ELEMENT_ARRAY_BUFFER

4

Part Il: Making a flat shaded
shape - Tetrahedron

N

class Tetrahedron extends Shape // A demo of flat vs smooth shading. Also our first 3D, non-planar shape.
{ constructor(using_flat_shading)
{ super();
var a = 1/Math.sqrt(3);

// Method 1: A tetrahedron with shared vertices. Compact, performs better,
// but can't produce flat shading or discontinuous seams in textures.

this.positions .push(...Vec.cast([0, 0, 0], [1,0,0], [0,1,0], [0,0,1]));
this.normals .push(...Vec.cast([-a,-a3,-a], [1,0,0], [0,1,0], [0,0,1]));
this.texture_coords.push(...Vec.cast([0,0],[1,0],[0,1, 1,[1,1 1));
this.indices .push(0,1,2, 0,1,3, 0,2,3, 1,2,3); // Vertices are shared multiple times with this method.

}
}, Shape)

[¥rFFEREEEIXR G E AT TETRAHEDRQN %% %k %k sk sk Substitute into the previous code

this.positions.push(...Vec.cast([0,0,0], [1,0,0], [0,1,0], // Method 2: A tetrahedron with
[0,0,0), [1,0,0], [0,0,1], // four independent triangles.
[0,0,0], [0,1,0], [0,0,1],
[0,0,1], [1,0,0], [0,1,0]));

this.normals.push(...Vec.cast([0,0,-1], [0,0,-1], [0,0,-1], // This here makes Method 2 flat shaded, since
[0,-1,0], [0,-1,0], [0,-1,0], // normal values can be constant per-triangle.
[-1,0,0], [-1,0,0], [-1,0,0], // Repeat them for all three vertices.
[a,a,a],[a,a,a],[a,a,a]));

this.texture_coords.push(...Vec.cast([0,0], [1,0], [1,0], // Each face in Method 2 also gets its own set of texture coords
[0,0], [1,0], [1,0], //(half the image is mapped onto each face). We couldn't do this
[0,0], [1,0], [1,0], // with shared vertices since this features abrupt transitions
[0,0], [1,0], [1,0])); // when approaching the same point from different directions.

this.indices.push(0,1,2, 3,4,5, 6,7,8, 9,10,11); // Notice all vertices are unique this time.

4
N

Part Ill: Better Shapes

Beyond Tetrahedrons

A complicated shape: Windmiill

Make non-trivial structures using:

* Transformation matrices on points
* Loops
— Dependence on loop indices

class Windmill extends Shape // As our shapes get more complicated, we begin using matrices and flow control
{ constructor(num_blades) // control (including loops) to generate non-trivial point clouds and connect them.
{ super();
for(vari=0;i<num_blades;i++) //Aloop to automatically generate the triangles.
{
var spin = Mat4.rotation(i * 2*Math.Pl/num_blades, Vec.of(0,1,0)); // Rotate around a few degrees in XZ plane to place each new point.
var newPoint = spin.times(Vec.of(1,0,0,1)).to3(); // Apply that XZ rotation matrix to point (1,0,0) of the base triangle.
this.positions.push(newPoint, // Store this XZ position. This is point 1.
newPoint.plus([0,1,0]), // Store it again but with higher y coord: This is point 2.
Vec.of(0,0,0)); //Alltriangles touch this location. This is point 3.

// Rotate our base triangle's normal (0,0,1) to get the new one. Careful! Normal vectors are not points; their perpendicularity constraint
// gives them a mathematical quirk that when applying matrices you have to apply the transposed inverse of that matrix instead. But right
// now we've got a pure rotation matrix, where the inverse and transpose operations cancel out.

var newNormal = spin.times(Vec.of(0,0,1).to4(0)).to3();

this.normals .push(newNormal, newNormal, newNormal);

this.texture_coords.push(...Vec.cast([0,0],[0,1],[1,01]));

this.indices .push(3*i, 3*i+ 1, 3*i+2); // Procedurally connect the three new vertices into triangles.

4
N

Part IV: Closed Shapes

Arbitrary sheets of points, curved until they are geometrically closed

Closed Shapes

* Windmill is pretty but its geometry is not closed.
* Challenge: Make a closed, solid shape using those advanced practices.

e Surface_Of_Revolution in your code generates common closed shapes
— Produces a curved “sheet” of triangles with rows and columns.

Begin with an input array of points, defining a 1D path curving through
3D space

Imagine each point is a row.

Sweep that whole curve around the Z axis in equal steps, stopping and
storing new points along the way; imagine each step is a column.

Now we have a flexible "generalized cylinder" spanning an area

Grid Patch

* This class drives the most complex shapes in your “shapes upgrade” demo
called Surfaces_Demo.

Grid Patch

class Cylindrical_Tube extends Surface_Of_Revolution // An open tube shape with equally sized sections, pointing down Z locally.
{ constructor(rows, columns, texture_range) { super(rows, columns, [...Vec.cast([1, 0, .5], [1, 0, -.5])], texture_range); } }

class Cone_Tip extends Surface_Of_Revolution // Note: Curves that touch the Z axis degenerate from squares into triangles as they sweep around
{ constructor(rows, columns, texture_range) { super(rows, columns, [...Vec.cast([0, 0, 1], [1, 0, -1])], texture_range); } }

 Most of these shapes are made using tiny code due to the help of two
classes: Grid_Patch and Surface_Of Revolution (a special case of
Grid_Patch). Grid_Patch works by generating a tesselation of triangles
arranged in rows and columns, and produes a deformed grid by doing
user-defined steps to reach the next row or column.

Grid_Patch

* A cone and cylinder are among the simplest and most useful new
shapes.

* Also available is a set of axis arrows that can be drawn anytime that
you want to check where and how long your current coordinate
axes are. Draw it in a neutral color with the "rgb.jpg" texture image
and the axes will become identifiable by color - XYZ maps to red,
green, blue.

Grid Patch

* All of these shapes are generated as a single vertex array each.
Building them that way, even with shapes like the axis arrows that
are compounded together out of many shapes, speeds up your
graphics program considerably.

Custom Shapes

Grid_Patch is your most flexible class for making shapes. For Project 2, you will
get more mileage out of it than anything else if you use it creatively.
— All you need to provide is a functions for reaching the next row and column
from the current one.
— Your functions will receive from Grid_Patch arguments of (i, p, j) where:
* jisthe progress through the rows (from 0 to 1),
e jisthe progress through the columns, and
* pisthe previous row or column’s point.

Surface_Of Revolution can also yield a complex shape satisfying Project 2’s
custom polygon requirement rather easily.

Custom Shapes

 Example: A custom bullet shape can be made by simply storing some points in an
array that follow the outline of a bullet, and using Surface_Of_Revolution to
sweep that curve around the Z axis.

— To make the outline of a bullet, keep pushing points onto an array. To
generate the round parts, either use:
* Loops and trig, or better yet:
 Keep a “temp” point that you keep incrementally applying matrices to,
stepping along the curve you want and adjusting the transform
depending on how far along the bullet you are.

4

Part V: How to make a good l
Sphere?

https://en.wikipedia.org/wiki/Subdivision_surface

https://en.wikipedia.org/wiki/Subdivision_surface

Subdivision Surfaces

e Building our sphere shape

— We know we want a lot of connected triangles around the
origin. Norm =1 for each point.

— Simplest case: a tetrahedron
— Next simplest: Split each tetrahedron face into 4 triangles,
by connecting edge midpoints
* Finally, force all new points to have norm=1, pushing
points outward to the shape of a sphere

Subdivision Surfaces

e Result:

:'FEE‘;-l R ATAYA lnhﬁ%’-:
R IR
R g#. A *ﬂ' o

L

i =
e

