
P.4 ﻿ 188

P.4

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

﻿ ﻿ 189

Image
In the last chapter, we saw how text can be
dissolved and how the resulting elements—words,
letters, and even dots on contours—can be used for
experimentation. Similarly, images can be manipu-
lated: details can be copied, collages can be pro-
duced, and pixels—the digital image’s smallest units
of information—can become the basis of a new
visual world.

P.4 	 Image	 188

	 P.4.0 	 Hello, image	 190
	 P.4.1	 Image cutouts	 192
		 P.4.1.1	 Image cutouts in a grid	 192
		 P.4.1.2	 Feedback of image cutouts	 196
	 P.4.2 	 Image collection	 198
		 P.4.2.1 	Collage from image collection 	 198
		 P.4.2.2 	Time-based image collection 	 202
	 P.4.3	 Pixel values 	 204
		 P.4.3.1 	Graphics from pixel values	 204
		 P.4.3.2 	Type from pixel values	 210
		 P.4.3.3 	Real-time pixel values	 214
		 P.4.3.4 	Emojis from pixel values	 220

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 190

Hello, image
A digital image is a mosaic of small color tiles.
Dynamic access to these tiny elements allows for
the generation of new compositions. It is possible
to create your own collection of image tools with
the following programs.

→ P_4_0_01 Abstract images are created through the repeated copying
and extreme scaling of the source image.

P.4.0

→ P_4_0_01

An image is loaded and displayed in a
grid defined by the mouse. Each tile in
the grid is filled with a scaled copy of
the source image.

original image

original image

scaled image in the grid

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.0 Hello, image 191

Mouse:	 Position x: Number of horizontal tiles
	 Position y: Number of vertical tiles
Keys:	 S: Save image

The image is loaded in the
preload() function. This ensures
that the loading process is completed
before calling the setup() and
draw() functions.

The mouse position determines
tileCountX and tileCountY and,
thereby, their width stepX and height
stepY.

The image is drawn using the function
image(). The upper-left corner of
the image is located in the grid
(gridX, gridY); width and height
are determined by tile width stepX
and tile height stepY.

var img;

function preload() {
 img = loadImage('data/image.jpg');
}

function draw() {
 var tileCountX = mouseX / 3 + 1;
 var tileCountY = mouseY / 3 + 1;
 var stepX = width / tileCountX;
 var stepY = height / tileCountY;
 for (var gridY = 0; gridY < height; gridY += stepY) {
 for (var gridX = 0; gridX < width; gridX += stepX) {
 image(img, gridX, gridY, stepX, stepY);
 }
 }
}

1

2

3

1

2

3

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 192

Image cutouts
in a grid

The principle illustrated below is almost the same as
the one in the previous example, and yet a whole new
world of images emerges. An image’s details and fine
structures become pattern generators when only a
portion of it is selected and configured into tiles. The
results are even more interesting if these sections are
randomly selected.

P.4.1.1

Using the mouse, a section of the image is
selected in the display window. After releas-
ing the mouse button, several copies of this
section are stored in an array and organized
in a grid. The program offers two variations.
In variation one, all copies are made from
the exact same section. In variation two,
the section is shifted slightly at random
each time.

→ P_4_1_1_01

array [. . .] array [. . .]

variation 1: no random shift variation 2: random shift

→ P_4_1_1_01 By repeatedly copying and moving image sections, abstract images are created.

original image

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.1.1 Image cutouts in a grid 193

The core of the program is the
cropTiles() function. Here the
image is fragmented and the copies
of the sections are stored in an array.

The image framing array imgTiles
is cleared.

When version two comes into play
(randomMode is true), all the values
for cropX and cropY are randomly
selected from a value range around
the mouse position.

The constrain() function ensures
that the cutout section does not
extend beyond the image boundaries.

Finally, the section is copied from the
image img using get() and stored in
the array.

function cropTiles() {
 tileWidth = width / tileCountY;
 tileHeight = height / tileCountX;
 imgTiles = [];

 for (var gridY = 0; gridY < tileCountY; gridY++) {
 for (var gridX = 0; gridX < tileCountX; gridX++) {
 if (randomMode) {
 cropX = int(random(mouseX - tileWidth / 2,
 mouseX + tileWidth / 2));
 cropY = int(random(mouseY - tileHeight / 2,
 mouseY + tileHeight / 2));
 }
 cropX = constrain(cropX, 0, width - tileWidth);
 cropY = constrain(cropY, 0, height - tileHeight);
 imgTiles.push(img.get(cropX, cropY,
 tileWidth, tileHeight));
 }
 }
}

1

2

3

4

5

1

2

3

4

5

Mouse:	 Position x/y: Detail positioning
	 Left click: Copy detail
Keys:	 1–3: Change detail size
	 R: Random on/off
 	 S: Save image

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 194

→ P_4_1_1_01 The multiplication of small image sections creates rhythmic structures that are
only recognizable as image sections at a second glance.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.1.1 Image cutouts in a grid 195

→ P_4_1_1_01 Using keys 1 to 3, selections can be made among different portions of the image
sections. The motifs are still recognizable in these large, detail-rich excerpts but now have an
unsettling perspective.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 196

Feedback of
image cutouts

A familiar example of feedback: a video camera is
directed at a television screen that displays the image
taken by the camera. After a short time, the television
screen depicts an ever-recurring and distorted image.
When this phenomenon is simulated, an image’s level
of complexity is increased. This repeated overlaying
leads to a fragmentary composition.

→ P_4_1_2_01 Right after the program starts, the motif is easily recognizable. It then dissolves
more and more through the overlapping of copied image strips.

→ Fotografie: Stefan Eigner original image: subway tunnel

P.4.1.2

First, the image is loaded and shown in the
display. A section of the image is copied to a
new randomly selected position with each
iteration step. The resulting image now
serves as the basis for the next step—the
principle of each and every feedback.

→ P_4_1_2_01

source image

...

feedback step—
the result is a new
source image

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.1.2 Feedback of image cutouts 197

Keys:	 DEL: Delete display
	 S: Save image

When the program is started, the
loaded image is offset one hundred
pixels downward using the image()
command and positioned on the
drawing canvas.

The x-position of the detail to be
copied (x1), the target position (x2,
y2), and its width (w) are all deter-
mined randomly.

Using the function get(), some of
the canvas content is copied and
then pasted into the new position
(x2, y2) using set().

function setup() {
 createCanvas(1024, 780);
 image(img, 0, 100);
}

function draw() {
 var x1 = floor(random(width));
 var y1 = 0;

 var x2 = round(x1 + random(-7, 7));
 var y2 = round(random(-5, 5));

 var w = floor(random(10, 40));
 var h = height;

 set(x2, y2, get(x1, y1, w, h));
}

1

2

3

1

2

3

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 198

Collage from
image collection

Your archive of photographs now becomes artistic
material. This program assembles a collage from a
folder of images. The cropping, cutting, and sorting
of the source images are especially important, since
only picture fragments are recombined in the collage.

→ P_4_2_1_01 Illustration: Andrea von Danwitz The image consists of three levels: scraps of
paper are on layer 1, cutouts of the sky on layer 2, and plants and street elements on layer 3.

P.4.2.1

A new composition is immediately created
when the images on a level are switched or the
parameters are changed.

→ P_4_2_1_01

All the pictures in a folder are read
dynamically and assigned to one of
several layers. This allows the seman-
tic groups to be treated differently.
The individual layers also have room
for experimentation with rotation,
position, and size when constructing
the collage. Note the layer order; the
first level is drawn first and is thus in
the background.

All images from a
folder are read and
randomly arranged in
display window
according to the
defined parameters.

Images are assigned to layers
according to the filenames
(e.g., “layer01_01.png”).

layer01_01.png

layer02_01.png

layer03_01.png

layer01_02.png

layer02_02.png

layer03_02.png

Here, only a few large elements are created
from the images on layer 2, while many small
ones are created from those on layer 3.

layer 1

layer 2

layer 3

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.2.1 Collage from image collection 199

Keys:	 1–3: New random arrangement for one of the three levels
	 S: Save image

Several arrays are needed to load the
images and arrange the layout of the
collage pieces. In layer1Images,
e.g., the loaded images are saved for
the first layer in order to be used later
to create the collage items.

The function
generateCollageItems() fills
the array layers (layer1Items,...)
with collage items. The parameters
determine which loaded images are to
be used and how many items are to
be created, and they specify value
ranges for positions, scattering,
scaling, and rotation. In this example,
images in the array layer1Items
are used. All instances are placed in
the position (width/2, height/2)
with a scattering of width and
height. The scaling varies from 0.1
to 0.5 and no rotation is used.

Each time the
drawCollageItems() function
is run, one of the layers is drawn.
The order of the layers’ invocation
determines the construction of
the final composition. The images
from layer1Items are located
in the background, those from
layer3Items in the foreground.

All features of a collage item are
summarized in the class
CollageItem.

1

2

3

4

1

2

3

4

var layer1Images = [];
var layer2Images = [];
var layer3Images = [];

var layer1Items = [];
var layer2Items = [];
var layer3Items = [];

function setup() {
 ...
 layer1Items = generateCollageItems(
 layer1Images, 100, width / 2, height / 2,
 width, height, 0.1, 0.5, 0, 0);
 layer2Items = generateCollageItems(
 layer2Images, 150, width / 2, height / 2,
 width, height, 0.1, 0.3, -HALF_PI, HALF_PI);
 layer3Items = generateCollageItems(
 layer3Images, 110, width / 2, height / 2,
 width, height, 0.1, 0.4, 0, 0);

 drawCollageItems(layer1Items);
 drawCollageItems(layer2Items);
 drawCollageItems(layer3Items);
}

function CollageItem(image) {
 this.image = image;
 this.x = 0;
 this.y = 0;
 this.rotation = 0;
 this.scaling = 1;
}

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 200

→ P_4_2_1_02 → Illustration: Andrea von Danwitz A second version of the program allows the image details to be
arranged radially around a particular center. The angle at which the images gather and their distance from the center can be
specified for each layer.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.2.1 Collage from image collection 201
Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 202

Time-based
image collection

In this example, the inner structures of moving
images are visualized. After extracting individual
images from a video file, this program arranges
the images in defined and regular time intervals in a
grid. This grid depicts a compacted version of the
entire video file and represents the rhythm of its cuts
and frames.

To fill the grid, individual still images are
extracted at regular intervals from the entire
length of a video. Accordingly, a sixty-second
video and a grid with twenty tiles results in
three-second intervals.

Keys:	 S: Save image

Every time the draw() function is run,
an image is selected from the video
and depicted in the grid. The first
image at time 0 can be placed
immediately.

The next time in the video (nextTime)
is calculated. The variable
currentImage (a number between 0
and imageCount) is converted to a
second value between 0 and the entire
playing time of the video.

Using the time() function,
the program jumps to the newly
calculated time.

To define the next tile, gridX is
increased by 1. If the end of the line
has been reached, the program jumps
to the first image of the next line by
setting gridX to 0 and increasing
gridY incrementally.

The end of the program is reached
when all the tiles are filled with images.

function draw() {
 if(movie.elt.readyState == 4) {
 var posX = tileWidth * gridX;
 var posY = tileHeight * gridY;

 image(movie, posX, posY, tileWidth, tileHeight);

 currentImage++;
 var nextTime = map(currentImage, 0, imageCount,
 0, movie.duration());
 movie.time(nextTime);

 gridX++;
 if (gridX >= tileCountX) {
 gridX = 0;
 gridY++;
 }

 if (currentImage >= imageCount) noLoop();
 }
}

1

2

3

4

5

1

2

3

4

5

→ P_4_2_2_01

grid with 20 tiles

video file
0s

3s
6s

... 60s

P.4.2.2

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.2.2 Time-based image collection 203

→ P_4_2_2_01 Fifty-five images from a two-and-a-half-minute video clip, filmed on the way to
the main train station in Stuttgart, Germany.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 204

Graphics from
pixel values

Pixels, the smallest elements of an image, can serve
as the starting point for the composition of portraits.
In this example, each pixel is reduced to its color
value. These values modulate design parameters
such as rotation, width, height, and area. The pixel is
completely replaced by a new graphic representa-
tion, and the portrait becomes somewhat abstract.

The pixels of an image are analyzed sequen-
tially and transformed into other graphic
elements. The key to this is the conversion
of the color values of pixels (RGB) into the
corresponding gray values, because—in
contrast to the pure RGB values—these can
be practically applied to design aspects such
as line width. It is advisable to reduce the
resolution of the source image first.

→ P_4_3_1_01

→ P_4_3_1_01 → Photograph: Tom Ziora
The gray value of each pixel defines the size of
its diameter; the pixels’ original color values
are kept.

gray value defines
the dot size

pixel
(original image)

RGB

gray
value

P.4.3.1

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.1 Graphics from pixel values 205

Mouse:	 Position x/y: Different parameters
	 (dependent on drawing mode)
Keys:	 S: Save image

The width and height of the original
image determines the resolution of
the grid.

The color of the pixels at the current
grid position (and thus the image)
is defined.

In calculating the gray value, the
values for red, green, and blue are
weighted differently, whereby there
are no absolutely correct weights
since colors are both displayed and
perceived differently. This gray value
is used later to control individual
parameters.

The program provides several drawing
modes, drawMode, which can also
be influenced by the horizontal mouse
position. These were previously
converted into a value between 0.05
and 1 and are available in the variable
mouseXFactor.

1

2

3

4

1

2
3

4

for (var gridX=0; gridX<img.width; gridX++) {
 for (var gridY=0; gridY<img.height; gridY++) {
 var tileWidth = width / img.width;
 var tileHeight = height / img.height;
 var posX = tileWidth * gridX;
 var posY = tileHeight * gridY;

 img.loadPixels();
 var c = color(img.get(gridX, gridY));
 var grayscale = round(red(c) * 0.222 +
 green(c) * 0.707 + blue(c) * 0.071);

 switch (drawMode) {
 case 1:
 var w1 = map(grayscale, 0, 255, 15, 0.1);
 stroke(0);
 strokeWeight(w1 * mouseXFactor);
 line(posX, posY, posX + 5, posY + 5);
 break;
 case 2:
 ...
 }
 }
}

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 206

→ P_4_3_1_01 The gray value defines the size, stroke value, rotation,
and position of the elements.

→ P_4_3_1_01 In this drawing mode (key 9), each pixel is represented
by several color-distorting elements.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.1 Graphics from pixel values 207
Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 208

→ P_4_3_1_02 Pixels of various brightness are replaced here by SVG units. The SVG files have
been sorted according to brightness using a supplementary program. Note that the files have
been renamed (the brightness value forms the beginning of the file name).

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.1 Graphics from pixel values 209
Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 210

Type from
pixel values

The following text image is ambiguous. It can be
read for its meaning, or viewed at a distance and
perceived as a picture. The pixels from the image
control the configuration of the letters. The size of
each letter depends on the gray values of the pixels
in the original image and thereby creates an addi-
tional message.

A character string is processed letter
by letter → P.3.1.1/P.3.1.2 and con-
structed row by row in the normal
writing direction. Before a character is
drawn, its position in display coordi-
nates is matched to the corresponding
position in the original image in pixel
coordinates. Only a subset of the
original pixels is used—merely those
for which a corresponding character
position exists. The color of the
selected pixel can now be converted
into its gray value and the gray value
used to modulate the font size,
for example.

→ P_4_3_2_01

→ P_4_3_2_01 The color of a pixel can define the size or color of the letters, or both.

gray value
defines font size

pixel (original
image)

RGB gray
value

P.4.3.2

A

. . .

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.2 Type from pixel values 211

Keys:	 1: Switch character size mode
	 2: Switch character color mode
	 Arrow ↓/↑: Maximum character size –/+
	 Arrow ←/→: Minimum character size –/+
	 S: Save image

The writing process continues as long
as the y-coordinate of the current
writing position y is still less than the
height of the display.

Using the map() function, the display
coordinates are converted into image
coordinates; e.g., the x-coordinate x
is proportionally converted from a
value between 0 and the display
width to a corresponding value
between 0 and the width of the image
img.width.

Depending on the selected mode
fontSizeStatic (key 1 or 2), the
font size is set to a fixed value
fontSizeMax or is varied by the
gray value.

The value fontSize cannot be zero
or negative, as this would cause
problems. Therefore, the function
max() ensures this value is at least 1.

The value of the variable x is
increased by the character width.

If x is greater than or equal to the
width of the drawing canvas, the line
is wrapped. The y value then increas-
es by the line spacing and x restarts
from 0 on the far left of the drawing
canvas.

1

2

3

4

5

6

1

2

3

4

5

6

function draw() {
 ...
 var x = 0;
 var y = 10;
 var counter = 0;

 while (y < height) {
 img.loadPixels();

 var imgX = round(map(x, 0, width, 0, img.width))
 var imgY = round(map(y, 0, height, 0, img.height))
 var c = color(img.get(imgX, imgY));
 var grayscale = round(red(c) * 0.222 +
 green(c) * 0.707 +
 blue(c) * 0.071);

 push();
 translate(x, y);

 if (fontSizeStatic) {
 textSize(fontSizeMax);
 if (blackAndWhite) fill(grayscale);
 else fill(c);
 } else {
 var fontSize = map(grayscale, 0, 255,
 fontSizeMax, fontSizeMin);
 fontSize = max(fontSize, 1);
 textSize(fontSize);
 if (blackAndWhite) fill(0);
 else fill(c);
 }

 var letter = inputText.charAt(counter);
 text(letter, 0, 0);
 var letterWidth = textWidth(letter) + kerning;

 x += letterWidth;

 pop();

 if (x + letterWidth >= width) {
 x = 0;
 y += spacing;
 }

 counter++;
 if (counter >= inputText.length) {
 counter = 0;
 }
 }
 noLoop();
}

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 212

→ P_4_3_2_01 The size and color of the characters are defined by an underlying image.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.2 Type from pixel values 213

→ P_4_3_2_01 Here the gray value of the pixels determines font size.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 214

Real-time
pixel values

The color values of pixels can again be translated
into graphic elements but with two important differ-
ences: first, the pixels are constantly changing
because the images come from a video camera, and
second, pixels are translated sequentially by dumb
agents that are constantly in motion rather than all
at once. The motion captured by the camera and
the migration of the agents thus can paint a picture
right before our eyes.

→ P_4_3_3_0 1 The agent’s path gradually creates an image.

P.4.3.3

hue

saturation

brightness

original pixel
in HSB

stroke value

color value of the current
agent position

A dumb agent moves over the drawing
canvas. The color value of the current
real-time video image is analyzed at
each position and serves as a parame-
ter for each color and stroke value.
The mouse position defines the stroke
length and the speed of the agent.
→P.2.2.1 Dumb agents

→ P_4_3_3_01

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.3 Real-time pixel values 215

Mouse:	 Position x: Drawing speed
	 Position y: Direction
Keys:	 Arrow ↓/↑: Number of curve points –/+
	 Q: Stop drawing
	 W: Continue drawing
	 Arrow ←/→: Minimum font size –/+
	 S: Save image

The function createCapture()
creates a video element to access
images on the webcam.

The live video images from the
connected video camera are reduced
to the size of the drawing canvas.

The hide() command prevents the
video image from being automatically
displayed on the drawing canvas.

If the video signal is available, the
pixels of the current video image are
loaded.

As in a static pixel image, the pixels in
a video image are also numbered row
by row. Therefore, the pixel index has
to be calculated from the current
writing position (x, y). When using
webcams directed at the user, it is
useful to mirror the video image
horizontally using the calculation
video.width-1-x.

The stroke value is set so it is defined
by the hue of the pixel. The chroma.js
library helps to convert RGB to HSV
values.

The line element can now be drawn.
The first curve point is placed on the
current drawing position. This is done
twice because the first and last points
are not drawn when drawing lines with
curveVertex().

The variable pointCount now
specifies how many curve points are
to be drawn. The default value is 1, so
only one line is drawn. The curve
points are placed in random positions
around the drawing position. The
value diffusion specifies how
large this area is.

The last curve point is specified as
the new drawing position.

1

2

3

4

5

6

7

8

9

1

2
3

4

5

6

7

8

9

function setup() {
 ...
 video = createCapture(VIDEO, function(){
 streamReady = true
 });
 video.size(width, height);
 video.hide();
 ...
}

function draw() {
 if(streamReady) {
 for (var j = 0; j <= mouseX / 50; j++) {
 video.loadPixels();

 var pixelIndex = (((video.width - 1 - x)
 + y * video.width) * 4);
 var c = color(video.pixels[pixelIndex],
 video.pixels[pixelIndex + 1],
 video.pixels[pixelIndex + 2]);

 var cHSV = chroma(red(c), green(c), blue(c));
 strokeWeight(cHSV.get('hsv.h') / 50);
 stroke(c);

 diffusion = map(mouseY, 0, height, 5, 100);

 beginShape();
 curveVertex(x, y);
 curveVertex(x, y);

 for (var i = 0; i < pointCount; i++) {
 var rx = int(random(-diffusion, diffusion));
 curvePointX = constrain(x + rx, 0, width - 1);
 var ry = int(random(-diffusion, diffusion));
 curvePointY = constrain(y + ry, 0, height - 1);
 curveVertex(curvePointX, curvePointY);
 }

 curveVertex(curvePointX, curvePointY);
 endShape();

 x = curvePointX;
 y = curvePointY;
 }
 }
}

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 216

→ P_4_3_3_01 The people leave tracks in the image with their movements. The length of the
lines varies throughout the drawing process, whereby the image is sometimes more detailed and
sometimes more abstract.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.3 Real-time pixel values 217
Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 218

→ P_4_3_3_02 Three agents move around the display in this version of the program. The first
agent’s stroke value is defined by the pixel’s hue; the second’s by the pixel’s saturation; and the
third’s by the pixel’s brightness.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.3 Real-time pixel values 219

→ P_4_3_3_02 When a subject moves in front of the camera, a collection of seemingly random
scribbles come together to represent the subject’s form.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 220

Two additional scripts are required for
this program. These are loaded in
index.html.

Information about the average colors
of emoji files and their respective file
names is contained in emoji-
average-colors.js. The
calculation of the average colors
takes place in an additional program:
→ P_4_3_4_emoji_color_analyser.

file 1f4a3.png:

file 1f43b.png:

file 1f600.png:

In the variable icons, all images of the
emojis are loaded and can be called
later using their names (name).

1

2

3

4

5

6

1

2

3
4
5

6

<script src="../../libraries/kd-tree/kdTree.js"
 type="text/javascript"></script>
<script src="data/emoji-average-colors.js"
 type="text/javascript"></script>

var emojis = {
 "1f4a3": {"averageColor": {"r":57, "g":57, "b":52}},
 "1f43b": {"averageColor": {"r":187, "g":111,"b":88}},
 "1f600": {"averageColor": {"r":227, "g":181, "b":70}},
 ...
}

function preload() {
 img = loadImage("data/pic.png");
 icons = {};
 for (var name in emojis) {
 icons[name] = loadImage(emojisPath + "36x36/" +
 name + ".png");
 }
}

Color values ​​can be interpreted as points in
3D space. For this program, it is necessary to
find the shortest distance from a color value
to a set of other color values, here the
average colors of the individual emojis. There
are various mathematical methods for this
search. Particularly fast and comparatively
easy to use is the search in a so-called
k-dimensional tree. The functionality for this
is provided by the library kdTree.js.

→ P_4_3_4_01

P.4.3.4 Emojis from
pixel values

An emotional transformation from a raster element
to a symbol: here the things that visualize feelings
in an SMS become a small part of a greater whole.
Any collection of thumbnails in this program can be
the source material, and the pixel values ​​determine
which can join.

pixel in RGB

green

blue

red

shortest distance

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.4 Emojis from pixel values 221

Keys:	 S: Save image

The search for the closest color
begins here. Two things must be
created: first, an array of points and
their corresponding r, g, and b
colors. Each entry in the colors
array is also assigned the name name,
in order to display the appropriate
image files later.

Second, a function is defined that
specifies how the distance between
two points should be calculated.
Typically, this is the length of the
diagonal from color a to color b in the
RGB color space.

With the help of the kdTree library, a
so-called k-dimensional tree is
created. For this, the newly created
point list colors and the distance
function distance are passed as
parameters. In addition, a list of
dimensions must be passed.

The image, img, to be displayed is
scanned and the pixel color is stored
in c.

The nearest() function in the
kdTree library looks for the closest
points to the one just passed. The
last parameter indicates how many
results should be returned; only one
is needed here.

The search result is an array with the
closest points. Each entry in it is itself
an array with two elements: the point
itself and its distance to the point
passed in nearest(). In both arrays
the first entry is required: [0] [0].
The image of the emoji can now be
placed on the drawing canvas via
the name.

7

8

9

10

11

12

7

8

9

10

11

12

function setup(){
 ...
 var colors = [];
 for (var name in emojis) {
 var col = emojis[name].averageColor;
 col.name = name;
 colors.push(col);
 }

 var distance = function(a, b){
 return pow(a.r - b.r, 2) +
 pow(a.g - b.g, 2) +
 pow(a.b - b.b, 2);
 }

 tree = new kdTree(colors, distance, ["r", "g", "b"]);
}

function draw() {
 background(255);

 for (var gridX = 0; gridX < img.width; gridX++) {
 for(var gridY = 0; gridY < img.height; gridY++) {
 var posX = tileWidth * gridX;
 var posY = tileHeight * gridY;

 var c = color(img.get(gridX, gridY));

 var nearest = tree.nearest(
 {r:red(c), g:green(c), b:blue(c)},
 1);

 var name = nearest[0][0].name;
 image(icons[name], posX, posY,
 tileWidth, tileHeight);
 }
 }
 noLoop();
}

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 222

→ P_4_3_4_01 Every pixel becomes an emoji. Any image can be used, as long as it is large
enough to include many color values.

original photo

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.4 Emojis from pixel values 223

original photo

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4 Image 224

→ P_4_3_4_02 An image from a webcam could also be the basis of a
rasterization in emojis.

Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

P.4.3.4 Emojis from pixel values 225
Gross, Benedikt, et al. Generative Design Revised : Visualize, Program, and Create with JavaScript in P5. js, Princeton Architectural Press, 2018. ProQuest
 Ebook Central, http://ebookcentral.proquest.com/lib/newschool/detail.action?docID=5515144.
Created from newschool on 2020-03-11 12:35:13.

C
op

yr
ig

ht
 ©

 2
01

8.
 P

rin
ce

to
n

A
rc

hi
te

ct
ur

al
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

