CEMC at Home

Grade 11/12 - Tuesday, March 24, 2020 Divisors and Primes

There are lots of problems that involve divisors of integers: counting divisors, looking for particular divisors, identifying common divisors, and more. For the following problems it might be helpful to review what a prime number is and how to find the prime factorization of an integer. Let's practice:

1. Find the prime factorization of 72600 .

To help towards a solution, think about the following questions:

- What are prime numbers?
- Is 2 a divisor of 72600 ? Is 3 a divisor of 72600 ?
- For each prime divisor p of 72600 , how many copies of p can we factor out of 72600 ?

2. For how many integers n is $72\left(\frac{3}{2}\right)^{n}$ equal to an integer?

To help towards a solution, think about the following questions:

- Try some values of n. What if $n=1$? What if $n=10$? What if $n=-4$?
- How big can n be? How small can n be?
- Could prime factorizations help us here?

3. Determine the number of positive divisors of the integer 14 !.

Note: The factorial of a positive integer n, denoted by n !, is the product of all positive integers less than or equal to n. For example, $4!=1 \times 2 \times 3 \times 4=24$.
4. For a positive integer $n, f(n)$ is defined as the largest power of 3 that is a divisor of n.

What is $f\left(\frac{100!}{50!20!}\right)$?

More Info:

Check the CEMC at Home webpage on Wednesday, March 25 for a solution to Divisors and Primes. We encourage you to discuss your ideas online using any forum you are comfortable with.
These problems were taken from the CEMC's free online course Problem Solving and Mathematical Discovery. Check it out here: https://courseware.cemc.uwaterloo.ca/40

CEMC at Home

Grade 11/12 - Tuesday, March 24, 2020 Divisors and Primes - Solution

2
 3 5 7 (o) 13

 0

1. Find the prime factorization of 72600 .

Solution:

First, we factor 72600 into two factors, $72600=726 \times 100$. Next, we factor each of these factors into a product of two factors, $726=2 \times 363$ and $100=10 \times 10$. We repeat this process until all the factors are prime numbers, (some of these prime factors will be repeated),

$$
\begin{aligned}
72000 & =726 \times 100 \\
& =2 \times 363 \times 10 \times 10 \\
& =2 \times 3 \times 121 \times 2^{2} \times 5^{2} \\
& =2 \times 3 \times 11^{2} \times 2^{2} \times 5^{2} \\
& =2^{3} \times 3 \times 5^{2} \times 11^{2} .
\end{aligned}
$$

2. For how many integers n is $72\left(\frac{3}{2}\right)^{n}$ equal to an integer?

Solution:

Notice that the prime factorization of 72 is $2^{3} \times 3^{2}$, so the expression $72\left(\frac{3}{2}\right)^{n}$ can be written as

$$
72\left(\frac{3}{2}\right)^{n}=2^{3-n} \times 3^{2+n}
$$

The expression will be an integer whenever the exponents $3-n$ and $2+n$ are non-negative integers. So, $3-n \geq 0$ and $2+n \geq 0$ imply that $n \leq 3$ and $n \geq-2$. Hence, there are six possible values of n, which are $-2,-1,0,1,2,3$.
3. Determine the number of positive divisors of the integer 14!.

Solution:

First, we find the prime factorization of 14 !, which is the following:

$$
14!=2^{11} \times 3^{5} \times 5^{2} \times 7^{2} \times 11 \times 13
$$

Any divisor of 14 ! has a prime factorization of the form $2^{p} \times 3^{q} \times 5^{r} \times 7^{s} \times 11^{t} \times 13^{u}$, where p, q, r, s, t, u are integers and $0 \leq p \leq 11,0 \leq q \leq 5,0 \leq r \leq 2,0 \leq s \leq 2,0 \leq t \leq 1$, and $0 \leq u \leq 1$.

