CEMC at Home features Problem of the Week
 Grade 11/12 - Thursday, April 2, 2020 Three Equal Sides

In trapezoid $A B C D$, the lengths of $A B, A D$ and $D C$ are equal and the length of $B C$ is 2 units less than the sum of the lengths of the other three sides.

If the distance between the parallel sides $A D$ and $B C$ is 5 units, what is the area of the trapezoid?

More Info:

Check the CEMC at Home webpage on Thursday, April 9 for the solution to this problem.
Alternatively, subscribe to Problem of the Week at the link below and have the solution, along with a new problem, emailed to you on Thursday, April 9.

This CEMC at Home resource is the current grade 11/12 problem from Problem of the Week (POTW). POTW is a free, weekly resource that the CEMC provides for teachers, parents, and students. Each week, problems from various areas of mathematics are posted on our website and e-mailed to our subscribers. Solutions to the problems are e-mailed one week later, along with a new problem. POTW is available in 5 levels: A (grade 3/4), B (grade 5/6), C (grade $7 / 8$), D (grade 9/10), and E (grade 11/12).
To subscribe to Problem of the Week and to find many more past problems and their solutions visit: https://www.cemc.uwaterloo.ca/resources/potw.php

Problem of the Week Problem E and Solution
 Three Equal Sides

Problem

In trapezoid $A B C D$, the lengths of $A B, A D$ and $D C$ are equal and the length of $B C$ is 2 units less than the sum of the lengths of the other three sides. If the distance between the parallel sides $A D$ and $B C$ is 5 units, what is the area of the trapezoid?

Solution

Let x represent the length of $A B$. Then $A B=A D=D C=x$. Since the base $B C$ is two less than the sum of the three equal sides, $B C=3 x-2$.
Construct altitudes from A and D meeting $B C$ at E and F, respectively. Then $A E=D F=5$, the distance between the two parallel sides.
Let y represent the length of $B E$. We can show that $B E=F C$ using the Pythagorean
Theorem as follows: $B E^{2}=A B^{2}-A E^{2}=x^{2}-5^{2}=x^{2}-25$ and
$F C^{2}=D C^{2}-D F^{2}=x^{2}-5^{2}=x^{2}-25$. Then $F C^{2}=x^{2}-25=B E^{2}$, so $F C=B E=y$ since $F C>0$.
Since $\angle A E F=\angle D F E=90^{\circ}$ and $A D$ is parallel to $E F$, it follows that $\angle D A E=\angle A D F=90^{\circ}$ and $A E F D$ is a rectangle so $E F=A D=x$. The following diagram contains all of the given and found information.

We can now determine a relationship between x and y.

$$
\begin{aligned}
B C & =B E+E F+F C \\
3 x-2 & =y+x+y \\
2 x-2 & =2 y \\
x-1 & =y
\end{aligned}
$$

In right $\triangle A B E, A B^{2}=B E^{2}+A E^{2}$ gives $x^{2}=y^{2}+5^{2}$. Substituting $y=x-1$ we get $x^{2}=(x-1)^{2}+25$. Solving, $x^{2}=x^{2}-2 x+1+25$, or $2 x=26$, or $x=13$.

Since $x=13,3 x-2=3(13)-2=37$. Therefore, $A D=x=13$ and $B C=3 x-2=37$.
Therefore,

$$
\text { area of trapezoid } \begin{aligned}
A B C D & =A E \times(A D+B C) \div 2 \\
& =5 \times(13+37) \div 2 \\
& =125 \text { units }^{2}
\end{aligned}
$$

